A data repository and analysis framework for spontaneous neural activity recordings in developing retina

نویسندگان

  • Stephen John Eglen
  • Michael Weeks
  • Mark Jessop
  • Jennifer Simonotto
  • Tom Jackson
  • Evelyne Sernagor
چکیده

BACKGROUND During early development, neural circuits fire spontaneously, generating activity episodes with complex spatiotemporal patterns. Recordings of spontaneous activity have been made in many parts of the nervous system over the last 25 years, reporting developmental changes in activity patterns and the effects of various genetic perturbations. RESULTS We present a curated repository of multielectrode array recordings of spontaneous activity in developing mouse and ferret retina. The data have been annotated with minimal metadata and converted into HDF5. This paper describes the structure of the data, along with examples of reproducible research using these data files. We also demonstrate how these data can be analysed in the CARMEN workflow system. This article is written as a literate programming document; all programs and data described here are freely available. CONCLUSIONS 1. We hope this repository will lead to novel analysis of spontaneous activity recorded in different laboratories. 2. We encourage published data to be added to the repository. 3. This repository serves as an example of how multielectrode array recordings can be stored for long-term reuse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo.

The properties of spontaneous activity in the developing visual pathway beyond the retina are unknown. Multielectrode recordings in the lateral geniculate nucleus (LGN) of awake behaving ferrets, before eye opening, revealed patterns of spontaneous activity that reflect a reshaping of retinal drive within higher visual stages. Significant binocular correlations were present only when cortico-th...

متن کامل

Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina.

Spontaneous, rhythmic waves of excitation in the developing mammalian retina play a critical role in the formation of precise neuronal connectivity in the visual system. However, it is not known what circuits in the retina are responsible for the production of these waves. Using patch-clamp recordings in the whole-mount neonatal rabbit retina, this study reports that the displaced starburst ama...

متن کامل

Cortical Development: The Sources of Spontaneous Patterned Activity

A recent study has found that spontaneous neural activity in the developing visual cortex has two distinct origins - local intracortical circuits and spontaneous activity in the retina.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014